Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Plant Environ Interact ; 5(2): e10139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560414

RESUMO

Ferns are known to have a lower incidence of mycorrhization than angiosperms. It has been suggested that this results from carbon being more limiting to fern growth than nutrient availability, but this assertion has not been tested yet. In the present study, we took advantage of a fertilization experiment with nitrogen and phosphorus on cloud forest plots of the Ecuadorean Andes for 15 years. A previous analysis revealed changes in the abundances of fern species in the fertilized plots compared to the control plots and hypothesized that this might be related to the responses of the mycorrhizal relationships to nutrient availability. We revisited the plots to assess the root-associated fungal communities of two epiphytic and two terrestrial fern species that showed shifts in abundance. We sampled and analyzed the roots of 125 individuals following a metabarcoding approach. We recovered 1382 fungal ASVs, with a dominance of members of Tremellales (Basidiomycota) and Heliotales (Ascomycota). The fungal diversity was highly partitioned with little overlap between individuals. We found marked differences between terrestrial and epiphytic species, with the latter fundamentally missing arbuscular mycorrhizal fungi (AMF). We found no effect of fertilization on the diversity or relative abundance of the fungal assemblages. Still, we observed a direct impact of phosphorus fertilization on its concentration in the fern leaves. We conclude that fern-fungi relationships in the study site are not restricted by nutrient availability and suggest the existence of little specificity on the fungal partners relative to the host fern species.

2.
Microbiol Resour Announc ; 13(4): e0003124, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38488369

RESUMO

Chryseobacterium sp. MHB01, Rhodococcus qingshengii MHB02, and Agrobacterium tumefaciens MHB03 were isolated from superabsorbent polymer granules cultured with an arbuscular mycorrhizal fungus. Whole-genome sequencing of these three strains revealed genome sizes of 4.57 Mb, 7.13 Mb, and 5.49 Mb with G + C contents of 36.9%, 62.5%, and 58.2%, respectively.

3.
Plant Signal Behav ; 19(1): 2329842, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493504

RESUMO

Blueberries confront substantial challenges from climate change, such as rising temperatures and extreme heat, necessitating urgent solutions to ensure productivity. We hypothesized that ericoid mycorrhizal fungi (ErM) and plant growth-promoting bacteria (PGPB) would establish symbiotic relationships and increase heat stress tolerance in blueberries. A growth chamber study was designed with low (25/20°C) and high temperature (35/30°C) conditions with micropropagated blueberry plantlets inoculated with ErM, PGPB, and both. Gas exchange and chlorophyll fluorescence properties of the leaves were monitored throughout the growth. At harvest, biochemical assays and biomass analysis were performed to evaluate potential oxidative stress induced by elevated temperatures. ErM application boosted root biomass under 25/20°C conditions but did not impact photosynthetic efficiency. In contrast, PGPB demonstrated a dual role: enhancing photosynthetic capacity and reducing stomatal conductance notably under 35/30°C conditions. Moreover, PGPB showcased conflicting effects, reducing oxidative damage under 25/20°C conditions while intensifying it during 47°C heat shock. A significant highlight lies in the opposing effects of ErM and PGPB on root growth and stomatal conductance, signifying their reciprocal influence on blueberry plant behavior, which may lead to increased water uptake or reduced water use. Understanding these complex interactions holds promise for refining sustainable strategies to overcome climate challenges.


Assuntos
Mirtilos Azuis (Planta) , Micorrizas , Resiliência Psicológica , Bactérias , Água
5.
Plant Mol Biol ; 114(2): 21, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368585

RESUMO

Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.


Assuntos
Arabidopsis , Lotus , Arabidopsis/genética , Simbiose/genética , Genótipo , Agricultura , Evolução Biológica , Lotus/genética
6.
Plant Environ Interact ; 5(1): e10128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323132

RESUMO

The use of arbuscular mycorrhizal fungi (AMF) as biofertilizers has proven successful in boosting the yield and nutritional quality of a variety of crops. AMF associate with plant roots and exchange soil nutrients for photosynthetically derived C in the form of sugars and lipids. Past research has shown that not all AMF species are equal in their benefit to nutrient uptake and crop health, and that the most beneficial AMF species appear to vary by host species. Although an important human food staple, especially in developing regions where nutrient deficiency is a prevalent threat to public health, little work has been done to test the effectiveness of AMF in enhancing the nutritional quality of common bean (Phaseolus vulgaris L.). Therefore, our objective was to determine the most beneficial AMF species for inoculation of this important crop. We inoculated black beans (Phaseolus vulgaris black turtle beans) with eight individual AMF species and one mixed species inoculum in an outdoor pot trial over 3 months and assessed the extent to which they altered yield, mineral nutrient and anthocyanin concentration of seeds and leaf tissues. Despite seeing no yield effects from inoculation, we found that across treatments percent root length colonized by AMF was positively correlated with plant tissue P, Cu, and Zn concentration. Underlying these broad benefits, seeds from plants inoculated with three AMF species, Claroideoglomus claroideum (+15%), Funneliformis mosseae (+13%), and Gigaspora rosea (+11%) had higher P concentration than non-mycorrhizal plants. C. claroideum also increased seed potassium (K) and copper (Cu), as well as leaf aluminum (Al) concentration making it a promising candidate to further test the benefit of individual AMF species on black bean growth in field trials.

7.
J Exp Bot ; 75(4): 1134-1147, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37877933

RESUMO

Strigolactone is the collective name for compounds containing a butenolide as a part of their structure, first discovered as compounds that induce seed germination of root parasitic plants. They were later found to be rhizosphere signaling molecules that induce hyphal branching of arbuscular mycorrhizal fungi, and, finally, they emerged as a class of plant hormones. Strigolactones are found in root exudates, where they display a great variability in their chemical structure. Their structure varies among plant species, and multiple strigolactones can exist in one species. Over 30 strigolactones have been identified, yet the chemical structure of the strigolactone that functions as an endogenous hormone and is found in the above-ground parts of plants remains unknown. We discuss our current knowledge of the synthetic pathways of diverse strigolactones and their regulation, as well as recent progress in identifying strigolactones as plant hormones. Strigolactone is perceived by the DWARF14 (D14), receptor, an α/ß hydrolase which originated by gene duplication of KARRIKIN INSENSITIVE 2 (KAI2). D14 and KAI2 signaling pathways are partially overlapping paralogous pathways. Progress in understanding the signaling mechanisms mediated by two α/ß hydrolase receptors as well as remaining challenges in the field of strigolactone research are reviewed.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Micorrizas , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Lactonas/metabolismo , Micorrizas/fisiologia , Plantas/metabolismo , Hidrolases/genética
8.
Plant Cell Physiol ; 65(1): 107-119, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37874980

RESUMO

Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Solanum lycopersicum/genética , Raízes de Plantas/metabolismo , Simbiose/genética , Peptídeos/metabolismo
9.
Mycorrhiza ; 33(5-6): 409-424, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37947881

RESUMO

Orchids (Orchidaceae) are dependent on mycorrhizal fungi for germination and to a varying extent as adult plants. We isolated fungi from wild plants of the critically endangered terrestrial orchid Thelymitra adorata and identified them using a multi-region barcoding approach as two undescribed Tulasnella species, one in each of phylogenetic group II and III (OTU1) of the Tulasnellaceae. Using symbiotic propagation methods, we investigated the role of Tulasnella identity (species and isolate) and age post isolation, on the fungus's ability and efficacy in germinating T. adorata. The group II isolate did not support germination. Seed germination experiments were conducted using either (i) three different isolates of OTU1, (ii) 4- and 12-week-old fungal cultures (post isolation) of a single isolate of OTU1, and (iii) T. subasymmetrica which is widespread and known to associate with other species of Thelymitra. Culture age and fungal species significantly (P < 0.05) affected the time to germination and percentage of seed germination, with greater and faster germination with 4-week-old cultures. Tulasnella subasymmetrica was able to germinate T. adorata to leaf stage, although at slightly lower germination percentages than OTU1. The ability of T. adorata to germinate with T. subasymmetrica may allow for translocation sites to be considered outside of its native range. Our findings on the age of Tulasnella culture affecting germination may have applications for improving the symbiotic germination success of other orchids. Furthermore, storage of Tulasnella may need to take account of the culture age post-isolation, with storage at - 80 °C as soon as possible recommended, post isolation.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Orchidaceae/microbiologia , Germinação , Filogenia , Simbiose
10.
Mycologia ; 115(6): 739-748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812522

RESUMO

Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza-dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments.


Assuntos
Microbiota , Micorrizas , Ecossistema , Fungos/genética , Biodiversidade , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo
11.
PeerJ ; 11: e15686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719109

RESUMO

To meet food security, commercial fertilizers are available to boost wheat yield, but there are serious ill effects associated with these fertilizers. Amongst various organic alternatives, inoculating crop fields with mycorrhizal species is the most promising option. Although, mycorrhizae are known to enhance wheat yield, but how the mycorrhizae influence different yield and quality parameters of wheat, is not clear. Therefore, this study was undertaken to investigate the influence of indigenous mycorrhizal species on the growth of wheat, its nutritional status and soil properties, in repeated set of field experiments. In total 11 species of mycorrhizae were isolated from the experimental sites with Claroideoglomus, being the most dominant one. Five different treatments were employed during the present study, keeping plot size for each replicate as 6 × 2 m. Introduction of consortia of mycorrhizae displayed a significant increase in number of tillers/plant (49.5%), dry biomass (17.4%), grain yield (21.2%) and hay weight (16.7%). However, there was non-significant effect of mycorrhizal inoculation on 1,000 grains weight. Moreover, protein contents were increased to 24.2%. Zinc, iron, phosphorus and potassium concentrations were also increased to 24%, 21%, 30.9% and 14.8%, respectively, in wheat grains. Enhancement effects were also noted on soil fertility such as soil organic carbon % age, available phosphorus and potassium were increased up to 64.7%, 35.8% and 23.9%, respectively. Herein, we concluded that mycorrhizal introduction in wheat fields significantly increased tillering in wheat and this increased tillering resulted in overall increase in wheat biomass/yield. Mycorrhizae also enhanced nutritional attributes of wheat grains as well as soil fertility. The use of mycorrhizae will help to reduce our dependance on synthetic fertilizers in sustainable agriculture.


Assuntos
Micorrizas , Solo , Triticum , Carbono , Fertilizantes , Fósforo , Potássio
12.
Plants (Basel) ; 12(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631200

RESUMO

The establishment of Artemisia tridentata, a keystone species of the sagebrush steppe, is often limited by summer drought. Symbioses with arbuscular mycorrhizal fungi (AMF) can help plants to cope with drought. We investigated this possible effect on A. tridentata seedlings inoculated with native AMF and exposed to drought in greenhouse and field settings. In greenhouse experiments, AMF colonization increased intrinsic water use efficiency under water stress and delayed the decrease in photosynthesis caused by drought, or this decrease occurred at a lower soil water content. In the field, we evaluated the effect of AMF inoculation on colonization, leaf water potential, survival, and inflorescence development. Inoculation increased AMF colonization, and the seedlings experienced water stress, as evidenced by water potentials between -2 and -4 MPa and reduced stomatal conductance. However, survival remained high, and no differences in water potentials or survival occurred between treatments. Only the percentage of plants with inflorescence was higher in inoculated than non-inoculated seedlings. Overall, the greenhouse results support that AMF colonization enhances drought tolerance in A. tridentata seedlings. Yet, the significance of these results in increasing survival in nature remains to be tested under more severe drought than the plants experienced in our field experiment.

13.
Plants (Basel) ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570927

RESUMO

The Cactaceae family makes use of different strategies, both physiological and biochemical, for anatomical adjustments that allow them to grow and reproduce in arid environments. Morphological studies of Gymnocalycium have been scarce, and the anatomy and phytochemistry are still largely unknown. The aim of the present work was to analyze the structural, physiological, and biochemical features of Gymnocalycium marianae and G. oenanthemum, two endemic species of arid regions in Argentina. The anatomic structure, biomass, and photosynthetic pigments, as well as phenolic compound contents, were analyzed in the stem, spine, and root of both species. G. marianae showed stems with deeper substomatal chambers and a more developed photosynthetic tissue than G. oenanthemum. The spines of G. oenanthemum showed higher biomass, thicker epidermal and subepidermal cell walls, and a higher content of phenolic compounds than those of G. marianae. Ectomycorrhizae were observed for the first time in roots in both species. Roots of G. marianae showed high colonization, biomass, and content of phenolic compounds. Both species showed abundant mucilaginous fibers in the stem and root. Finally, these results show the strategies associated with the survival in xeric environments of two cacti species at risk of extinction. They could be useful for the development of ex situ conservation programs.

14.
Ecol Lett ; 26(9): 1614-1628, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37317651

RESUMO

Symbiont diversity can have large effects on plant growth but the mechanisms generating this relationship remain opaque. We identify three potential mechanisms underlying symbiont diversity-plant productivity relationships: provisioning with complementary resources, differential impact of symbionts of varying quality and interference between symbionts. We connect these mechanisms to descriptive representations of plant responses to symbiont diversity, develop analytical tests differentiating these patterns and test them using meta-analysis. We find generally positive symbiont diversity-plant productivity relationships, with relationship strength varying with symbiont type. Inoculation with symbionts from different guilds (e.g. mycorrhizal fungi and rhizobia) yields strongly positive relationships, consistent with complementary benefits from functionally distinct symbionts. In contrast, inoculation with symbionts from the same guild yields weak relationships, with co-inoculation not consistently generating greater growth than the best individual symbiont, consistent with sampling effects. The statistical approaches we outline, along with our conceptual framework, can be used to further explore plant productivity and community responses to symbiont diversity, and we identify critical needs for additional research to explore context dependency in these relationships.


Assuntos
Micorrizas , Rhizobium , Simbiose/fisiologia , Plantas , Raízes de Plantas/microbiologia
15.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299072

RESUMO

The old Zn-Pb-contaminated (calamine) tailings in southern Poland are spontaneously colonized by metal-tolerant Anthyllis vulneraria L. (Fabaceae), which can form simultaneously symbiotic association with nitrogen-fixing rhizobia and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). So far, fungal colonization and the AMF diversity of calamine-inhabiting legumes have been poorly studied. Thus, we determined AMF spore density in the substratum and the mycorrhizal status of nodulated A. vulneraria plants occurring on calamine tailings (M) and on a reference non-metallicolous (NM) site. The results indicate the presence of the Arum-type of arbuscular mycorrhiza in the roots of both Anthyllis ecotypes. Despite the presence of AM fungi in M plant roots, the dark septate endophyte (DSE) fungi (hyphae and microsclerotia) were occasionally also detected. Metal ions were accumulated mainly in the nodules and intraradical fungal structures rather than thick plant cell walls. Mycorrhization parameters (frequency of mycorrhization and intensity of root cortex colonization) for M plants were markedly higher and differed in a statistically significant manner from the parameters for NM plants. Heavy metal excess had no negative effect on the number of AMF spores, the amounts of glomalin-related soil proteins and AMF species composition. Molecular identification of AMF using PCR-DGGE analysis based on the 18S rDNA ribosomal gene by nested-PCR with primers AM1/NS31 and NS31-GC/Glo1 revealed similar genera/species of AMF in the roots of both Anthyllis ecotypes: Rhizophagus sp., R. fasciculatus, and R. iranicus. The results of this work indicate the presence of unique fungal symbionts, which may enhance A. vulneraria tolerance to heavy metal stress and plant adaptation to extreme conditions on calamine tailings.

16.
mBio ; 14(4): e0024023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37162347

RESUMO

Mitoviruses in the family Mitoviridae are the mitochondria-replicating "naked RNA viruses" with genomes encoding only the replicase RNA-dependent RNA polymerase (RdRp) and prevalent across fungi, plants, and invertebrates. Arbuscular mycorrhizal fungi in the subphylum Glomeromycotina are obligate plant symbionts that deliver water and nutrients to the host. We discovered distinct mitoviruses in glomeromycotinian fungi, namely "large duamitovirus," encoding unusually large RdRp with a unique N-terminal motif that is endogenized in some host genomes. More than 400 viral sequences similar to the large duamitoviruses are present in metatranscriptome databases. They are globally distributed in soil ecosystems, consistent with the cosmopolitan distribution of glomeromycotinian fungi, and formed the most basal clade of the Mitoviridae in phylogenetic analysis. Given that glomeromycotinian fungi are the only confirmed hosts of these viruses, we propose the hypothesis that large duamitoviruses are the most ancestral lineage of the Mitoviridae that have been maintained exclusively in glomeromycotinian fungi.


Assuntos
Glomeromycota , Micorrizas , Vírus de RNA , Micorrizas/genética , Simbiose , Filogenia , Ecossistema , Glomeromycota/genética , Plantas/microbiologia , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
17.
Mycologia ; 115(4): 499-512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166358

RESUMO

Despite their global presence and ubiquity, members of the class Geoglossomycetes (Pezizomycotina, Ascomycota) are understudied systematically and ecologically. These fungi have long been presumed saprobic due to their occurrence in or near leaf litter and soils. Additionally, they lack an apparent association with other organisms, reinforcing this perception. However, observations of sporocarps near ericaceous shrubs have given rise to an alternative hypothesis that members of Geoglossomycetes may form ericoid mycorrhizae or ectomycorrhizae. This claim, however, has yet to be confirmed via microscopy or amplicon-based studies examining root communities. As a result, our current understanding of their ecology is based on cursory observations. This study presents a comparative analysis of genomic signatures related to ecological niche to investigate the hypothesis of an ericoid mycorrhizal or ectomycorrhizal ecology in the class. We compared the carbohydrate-active enzyme (CAZyme) and secondary metabolite contents of six newly sequenced Geoglossomycetes genomes with those of fungi representing specific ecologies across Pezizomycotina. Our analysis reveals CAZyme and secondary metabolite content patterns consistent with ectomycorrhizal (EcM) members of Pezizomycotina. Specifically, we found a reduction in CAZyme-encoding genes and secondary metabolite clusters that suggests a mutualistic ecology. Our work includes the broadest taxon sampling for a phylogenomic study of Pezizomycotina to date. It represents the first functional genomic and genome-scale phylogenetic study of the class Geoglossomycetes and improves the foundational knowledge of the ecology and evolution of these understudied fungi.


Assuntos
Ascomicetos , Micorrizas , Filogenia , Ascomicetos/genética , Ecossistema , Micorrizas/genética , Genômica
18.
Ecology ; 104(6): e4039, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960918

RESUMO

Following a disturbance, dispersal shapes community composition as well as ecosystem structure and function. For fungi, dispersal is often wind or mammal facilitated, but it is unclear whether these pathways are complementary or redundant in the taxa they disperse and the ecosystem functions they provide. Here, we compare the diversity and morphology of fungi dispersed by wind and three rodent species in recently harvested forests using a combination of microscopy and Illumina sequencing. We demonstrate that fungal communities dispersed by wind and small mammals differ in richness and composition. Most wind-dispersed fungi are wood saprotrophs, litter saprotrophs, and plant pathogens, whereas fungi dispersed in mammal scat are primarily mycorrhizal, soil saprotrophs, and unspecified saprotrophs. We note substantial dispersal of truffles and agaricoid mushrooms by small mammals, and dispersal of agaricoid mushrooms, crusts, and polypores by wind. In addition, we find mammal-dispersed spores are larger than wind-dispersed spores. Our findings suggest that wind- and small-mammal-facilitated dispersal are complementary processes and highlight the role of small mammals in dispersing mycorrhizal fungi, particularly following disturbances such as timber harvest.


Assuntos
Ecossistema , Micorrizas , Animais , Vento , Florestas , Mamíferos , Roedores , Microbiologia do Solo , Fungos , Solo , Esporos Fúngicos
19.
Ecology ; 104(5): e4016, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36883195

RESUMO

Trait-based approaches in ecology are powerful tools for understanding how organisms interact with their environment. These approaches show particular promise in disturbance and community ecology contexts for understanding how disturbances like prescribed fire and bison grazing influence interactions between mutualists like arbuscular mycorrhizal (AM) fungi and their plant hosts. In this work we examined how disturbance effects on AM fungal spore community composition and mutualisms were mediated by selection for specific functional spore traits at both the species and community level. We tested these questions by analyzing AM fungal spore communities and traits from a frequently burned and grazed (bison) tallgrass prairie system and using these spores to inoculate a plant growth response experiment. Selection for darker, pigmented AM fungal spores, changes in the abundance and volume of individual AM fungal taxa, and altered sporulation, were indicators of fire and grazing effects on AM fungal community composition. Disturbance associated changes in AM fungal community composition were then correlated with altered growth responses of Schizachyrium scoparium grass. Our work shows that utilization of trait-based approaches in ecology can clarify the mechanisms that underly belowground responses to disturbance, and provide a useful framework for understanding interactions between organisms and their environment.


Assuntos
Bison , Micobioma , Micorrizas , Animais , Micorrizas/fisiologia , Simbiose , Bison/fisiologia , Esporos Fúngicos/fisiologia , Poaceae , Microbiologia do Solo , Solo
20.
Sci Total Environ ; 873: 162393, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841408

RESUMO

Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.


Assuntos
Microbiota , Micorrizas , Solo , Microbiologia do Solo , Plantas/microbiologia , Interações Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...